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ENERGY DISSIPATION

DURING VIBRATIONAL MOTION IN A LIQUID

UDC 534.014S. A. Gerasimov

The paper reports calculation results and an approximate description of the power expended by a sys-
tem in vibrational motion in a medium with drag proportional to velocity. It is shown that the power
expended in vibrational motion is proportional to the squared mean velocity and the proportionality
coefficient depends only on the drag of the medium.

Introduction. The mean velocity of so-called vibrational motion [1, 2] is not a single parameter that
describes this type of motion. Currently available results [3–5] are of a particular nature and cannot be used to
evaluate, for example, the energy loss during vibrational motion in a resistant medium [6, 7]. In some cases, this
characteristic can be even more important than the mean velocity of vibrational motion. Knowing the energy
loss expended by a system in vibrational motion and mean velocity, it is possible not only to adequately describe
vibrational motion but also to determine optimal conditions for the most effective process.

Energy Loss During Vibrational Displacement. The motion direction is collinear to only two forces:
the internal force F exerted by an unbalanced body of mass m on a platform of mass M , and the drag force of the
medium Fr, whose value is proportional to the velocity of motion of the platform v relative to the liquid L (Fig. 1).
Over the time t0 < t < t0 reckoned from the beginning of motion t0 to the moment of stop t0 and equal to the
period T of vibrations of the body of mass m, these forces perform zero work A,

A =

t0∫
t0

(F + Fr)v dt = 0,

because the motion of the platform is described by the equation

M
dv

dt
= F + Fr.

This implies that the work performed by the internal force F is completely expended in overcoming the drag of the
medium and to estimate the energy losses, it suffices to calculate the mean power

Pr =
1
T

t0∫
t0

λv2 dt

expended by the system in vibrational motion. Here λ is the drag coefficient of the media, which has different values
for different directions of motion of the platform:

λ =
{
λ+ for v > 0,
λ− for v < 0.

The velocity of the platform v is a function of m, M , T , λ+, λ−, and the amplitudes of oscillations of the unbalanced
body a and is defined by solving the following equation [7]:

dϑ

dτ
+
(1− δ

2
sign (ϑ) +

1 + δ

2

)
ϑ− 1

θ2
cos

2πτ
θ

= 0. (1)

Rostov State University, Rostov-on-Don 344090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya
Fizika, Vol. 43, No. 5, pp. 83–86, September–October, 2002. Original article submitted March 19, 2002.

706 0021-8944/02/4305-0706 $27.00 c© 2002 Plenum Publishing Corporation



Fig. 1. Diagram of vibrational motion of a platform in a liquid:
1) unbalanced body; 2) platform.

Here ϑ = M2
0 v/(4π

2maλ+), δ = λ−/λ+, τ = λ+t/M0, θ = λ+T/M0, and M0 = m + M . In these variables, the
normalized power

ρ = M4
0Pr/(16π4m2a2λ3

+)

depends only on the variables θ and δ and is defined by the expression

ρ =
1
θ

( τ1∫
τ0

ϑ2 dτ + δ

τ0∫
τ1

ϑ2 dτ

)
, (2)

where τ0, τ1, and τ0 are the values of the variable τ at t equal to t0, t1, and t0, respectively and t1 is the time of
an intermediate stop of the platform: t0 < t1 < t0 + T .

The procedure of solving the problem consists of numerical integration of the equation of motion (1), de-
termination of the time t1 when the velocity of the platform becomes equal to zero, calculation of the normalized
power (2), and processing of the calculation results. The part of the problem that includes calculations does not
involve great difficulties. In the calculations, it is necessary to chose the value t0 corresponding to steady motion,
for example, t0 = 10T . In this case, t0 = t0 + T . Problems arise in interpreting the calculations of the power
expended by the system in vibrational motion. The calculation results obtained can be used to optimize the regime
of vibrational motion. Use of the dependence of the normalized power ρ on the asymmetry parameter δ and the
normalized period of vibrations θ is ineffective in this case. Therefore, it is reasonable to present result in universal
form. In particular, this can be done using the self-similar representation of [7], which is a consequence of the
symmetry of the system parameters with change in the direction of motion. For example, the value of the variable
θδ = θ/(1 + 1/δ) does not change when λ+ and λ− are replaced simultaneously by λ− and λ+, respectively. In fact,
this replacement is identical to the transformation

λ+ → λ+λ−/(λ+ + λ−). (3)

In contrast to the velocity [7], the sign and value of the power do not change with change in the direction of motion.
This implies that the normalized power should be converted by the rule ρ → ρ(1 + 1/δ)3 because the power is
determined not by the velocity of the platform but by the squared velocity, to which a symmetric transformation
should correspond with change in the direction of motion.

The aforesaid can be used for approximate description of calculation results, which is not always valid [8]. In
our case, this approach gives fairly accurate results for all θ > 0.1 and any asymmetry parameters, including δ = 1
(Fig. 2). At the same time, this representation is quite definite. For specified values of θδ and ρδ = ρ(1 + 1/δ)3,
it allows one not only to find the energy expended in vibrational motion but also to determine the normalized
period θ.

As the vibration period increases, the expended power tends rapidly to zero, which is confirmed by the
approximate analytical dependence of the normalized power ρ on the normalized period θ:

ρ ≈ δ(δ + 1)/{5θ2[θ2δ2 + 7(δ + 1)2]}. (4)

The results of numerical calculations presented in Fig. 2 and the approximate relation (4) show that the power Pr
is not zero even in the case where the infinite (unlimited) displacement of the platform is absent, i.e., for δ = 1. In
the absence of asymmetry, the center of gravity of the system of bodies is at rest although the platform performs
forced nonharmonic oscillations about the medium.
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Fig. 2. Self-similar dependence of the normalized power ρδ = ρ(1+1/δ)3 expended by
the system in vibrational motion on the normalized vibration period θδ = θ/(1+1/δ)
and the asymmetry parameter δ: solid curve refers to relation (4) and the points refer
to results of numerical calculation of the normalized power at 0.1 6 θ 6 16.

Fig. 3. Curve of normalized power versus mean normalized velocity (solid curve) and
asymptotic relations (6) and (7) for large (u→∞) (dashed curve) and small (u→ 0)
(dotted curve) velocities of vibrational motion.

Energy Loss and Mean Velocity. The energy lost by the system tends rapidly to zero, with increase
in vibration period. To explain this phenomenon, it is reasonable to establish the relationship between the power
expended in vibrational motion and the mean velocity. For this, from the equation defining the mean normalized
velocity ϑ̄ [7], it is necessary to find the normalized period

θ ≈ (δ − 1)/{[64ϑ̄(δ + 1)2 + 25δ(δ − 1)/8]1/2ϑ̄1/2}
and substitute it into expression (4) for the normalized power. As a result, we obtain

ρ = δ3(512u+ 25)2u2/{40(δ + 1)3[8 + 7u(512u+ 25)]}, (5)

where u = ϑ̄(δ + 1)2/[δ(δ − 1)] is the normalized mean velocity written with the argument θ/(1 + 1/δ) eliminated.
For large values of u, expression (5) reduces to the simple form

Pr ≈ (64/35)λ′v̄2, (6)

where λ′ = λ+λ−(λ− + λ+)/(λ− − λ+)2.
A similar relation is observed for low velocities:

Pr ≈ (125/64)λ′v̄2. (7)

Figure 3 shows a curve of ρδ = ρ(1 + 1/δ)3 versus u and the asymptotic relations (6) and (7). The fact that
over the entire velocity range, the power loss is proportional to the squared mean velocity is not unexpected because
when the body moves without vibration in a medium with drag proportional to the velocity of the body v, the
expended power is P = λv2. The proportionality coefficient in expressions (6) and (7) do not depend on parameters
of the system, Therefore, it is impossible to determine the conditions corresponding to the minimum energy loss for
a specified mean velocity of vibrational motion. The optimal regime of vibrational motion can be established only
after adopting additional conditions.
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